Regulation of β cell glucokinase by S-nitrosylation and association with nitric oxide synthase

نویسندگان

  • Mark A. Rizzo
  • David W. Piston
چکیده

Glucokinase (GK) activity plays a key role in glucose-stimulated insulin secretion from pancreatic beta cells. Insulin regulates GK activity by modulating its association with secretory granules, although little is known about the mechanisms involved in regulating this association. Using quantitative imaging of multicolor fluorescent proteins fused to GK, we found that the dynamic association of GK with secretory granules is modulated through nitric oxide (NO). Our results in cultured beta cells show that insulin stimulates NO production and leads to S-nitrosylation of GK. Furthermore, inhibition of NO synthase (NOS) activity blocks insulin-stimulated changes in both GK association with secretory granules and GK conformation. Mutation of cysteine 371 to serine blocks S-nitrosylation of GK and causes GK to remain tightly bound to secretory granules. GK was also found to interact stably with neuronal NOS as detected by coimmunoprecipitation and fluorescence resonance energy transfer. Finally, attachment of a nuclear localization signal sequence to NOS drives GK to the nucleus in addition to its normal cytoplasmic and granule targeting. Together, these data suggest that the regulation of GK localization and activity in pancreatic beta cells is directly related to NO production and that the association of GK with secretory granules occurs through its interaction with NOS.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Helicobacter pylori Induction in Gastric Mucosal Prostaglandin and Nitric Oxide Generation Is Dependent on MAPK/ERK-Mediated Activation of IKK-β and cPLA2: Modulatory Effect of Ghrelin

Among the key factors defining the extent of gastric mucosal inflammatory involvement in response to H. pylori is the excessive generation of prostaglandin (PGE2) and nitric oxide (NO), caused by the overexpression of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS), and triggered by the activation of MAPK/JNK, p38 and ERK, and nuclear translocation of the cognate transcripti...

متن کامل

Modulation of gastric mucosal inflammatory responses to Helicobacter pylori by ghrelin: Role of cNOS-dependent IKK-β S-nitrosylation in the regulation of COX-2 activation

Disturbances in nitric oxide synthase (NOS) and cyclooxygenase (COX) isozyme systems, manifested by the excessive NO and prostaglandin (PGE2) generation, are well-recognized features of gastric mucosal inflammatory responses to H. pylori infection. In this study, we report that H. pylori LPS-induced enhancement in gastric mucosal inducible (i) iNOS expression and COX-2 activation was accompanie...

متن کامل

Glucagon-like peptide 1 stimulates post-translational activation of glucokinase in pancreatic beta cells.

Glucagon-like peptide 1 (GLP-1) potentiates glucose-stimulated insulin secretion from pancreatic β cells, yet does not directly stimulate secretion. The mechanisms underlying this phenomenon are incompletely understood. Here, we report that GLP-1 augments glucose-dependent rises in NAD(P)H autofluorescence in both βTC3 insulinoma cells and islets in a manner consistent with post-translational a...

متن کامل

Ghrelin Protection against Lipopolysaccharide-Induced Gastric Mucosal Cell Apoptosis Involves Constitutive Nitric Oxide Synthase-Mediated Caspase-3 S-Nitrosylation

Ghrelin, a peptide hormone produced mainly in the stomach, has emerged as an important modulator of the inflammatory responses that are of significance to the maintenance of gastric mucosal integrity. Here, we report on the role of ghrelin in controlling the apoptotic processes induced in gastric mucosal cells by H. pylori lipopolysaccharide (LPS). The countering effect of ghrelin on the LPS-in...

متن کامل

S-nitrosylation of proteins at the leading edge of migrating trophoblasts by inducible nitric oxide synthase promotes trophoblast invasion.

Nitric oxide regulates many important cellular processes including motility and invasion. Many of its effects are mediated through the modification of specific cysteine residues in target proteins, a process called S-nitrosylation. Here we show that S-nitrosylation of proteins occurs at the leading edge of migrating trophoblasts and can be attributed to the specific enrichment of inducible nitr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of Cell Biology

دوره 161  شماره 

صفحات  -

تاریخ انتشار 2003